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Abstract

The technique of manufactured solutions is used for verification of computational mod-
els in many fields. In this paper we construct manufactured solutions for models of
three-dimensional, isothermal, nonlinear Stokes flow in glaciers and ice sheets. The so-
lution construction procedure starts with kinematic boundary conditions and is mainly5

based on the solution of a first-order partial differential equation for the ice velocity that
satisfies the incompressibility condition. The manufactured solutions depend on the ge-
ometry of the ice sheet and other model parameters. Initial conditions are taken from
the periodic geometry of a standard problem of the ISMIP-HOM benchmark tests and
altered through the manufactured solution procedure to generate an analytic solution10

for the time-dependent flow problem. We then use this manufactured solution to verify
a parallel, high-order accurate, finite element Stokes ice-sheet model. Results from the
computational model show excellent agreement with the manufactured analytic solu-
tions.

1 Introduction15

Model verification and validation are crucial steps in the development and testing of
computational models. Verification is the process of determining if a particular im-
plementation and solution of a given mathematical model (for example through some
choice of model discretization and numerical solution algorithms) is complete and error
free. Validation aims to answer the entirely separate question of whether or not a given20

mathematical model is an accurate representation of the real world process it aims
to mimic. Manufactured analytical solutions provide one means for performing model
verification.

The importance of ice-sheet modeling in climate studies is highlighted in, e.g. Al-
ley et al. (2012) and the need for verified and validated models is discussed in25

Pachauri et al. (2007). The goal of this paper is to provide a means, through the use
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of manufactured solutions, for the verification of three-dimensional ice-sheet models
as a necessary step for providing accurate, science-based predictions of ice-sheet
changes over climatic time scales. Manufactured analytical solutions have been used
previously by the ice-sheet modeling community (Bahr, 1996; Bueler et al., 2005, 2007;
Sargent and Fastook, 2010).5

The nonlinear, three-dimensional (3-D) Stokes model is generally accepted as the
gold standard for the modeling of ice flow within glaciers and ice sheets (Le Meur et al.,
2004; Gagliardini et al., 2008; Burstedde et al., 2009; Zhang et al., 2011; Larour et al.,
2012; Leng et al., 2012). The more commonly used shallow-ice, shallow-shelf, L1L2,
and first-order approximations are reduced forms of the 3-D Stokes model that are10

numerically simpler and computationally cheaper to solve, but with an attendant loss
of fidelity in some situations (see discussions in Dukowicz et al., 2010; Schoof and
Hindmarsh, 2010, and the references cited therein). As an example, the ISMIP-HOM
project (Pattyn et al., 2008) compared diagnostic output from a number of “higher-
order” (i.e. those accounting for horizontal stress gradients) and Stokes flow ice-sheet15

models on idealized domains. For certain combinations of domain aspect ratio, basal
roughness, and basal sliding conditions, higher-order and Stokes model solutions dif-
fer significantly. Ideally, diagnostic output from Stokes models should first be compared
with that from lower-order approximations in order to identify portions of the model do-
main for which the Stokes (relatively expensive) versus the reduced (relatively cheaper)20

sets of equations apply with sufficient accuracy (e.g. Morlighem et al., 2010). Such an
approach would allow for an ideal tradeoff between model accuracy and expense (e.g.
Seroussi et al., 2012).

Manufactured solutions for the verification of isothermal Stokes ice sheet models
were recently proposed by Sargent and Fastook (2010) for two and three-dimensional25

model domains. In their approach, the major task in the construction of the analytic
solution is to solve a first-order partial differential equation. However, due to essential
errors in their solution method for this key part in the three-dimensional case, the Sar-
gent and Fastook (2010) manufactured solutions (both the general form of the solution
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and the solution for the specific geometry) for the 3-D Stokes model are incorrect. In
Leng et al. (2012), the authors “extruded” the correct 2-D analytical solution of Sar-
gent and Fastook (2010) to a third dimension and used it to verify the output from their
Stokes ice-sheet model. This method of generating and applying a 3-D manufactured
solution is far from optimal, as the 3-D model is applied in a 2-D mode, leaving parts of5

the 3-D model untested. In this paper, we rectify this deficiency by generating fully 3-D
manufactured solutions for the validation of isothermal, nonlinear Stokes models of ice
flow.

The paper is organized as follows. In Sect. 2, we present the 3-D nonlinear Stokes
equations for modeling isothermal ice sheets along with some related boundary condi-10

tions. In Sect. 3, we derive in detail the manufactured analytical solutions for the 3-D,
time-dependent Stokes ice-sheet model. In Sect. 4, we use the manufactured solutions
for the numerical verification of the parallel finite element ice-sheet model of Leng et al.
(2012). We finish in Sect. 5 with concluding remarks.

2 Governing equations of the Stokes ice-sheet model15

2.1 Ice dynamics and evolution

The dynamical behavior of ice sheets is modeled by the Stokes equations for an in-
compressible, power-law viscous fluid in a low Reynolds-number flow. Letting [0,tmax]
denote the time interval of interest and Ωt the three-dimensional spatial domain occu-
pied by the ice sheet, we have20
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∂
(
2µ∂u∂x +p

)
∂x

+
∂
(
µ
(∂u
∂y +

∂v
∂x

))
∂y

+
∂
(
µ
(∂u
∂z +

∂w
∂x

))
∂z

= 0, (1)

∂
(
µ
(∂u
∂y +

∂v
∂x

))
∂x

+
∂
(
2µ∂v∂y +p

)
∂y

+
∂
(
µ
(∂v
∂z +

∂w
∂y

))
∂z

= 0, (2)

∂
(
µ
(∂u
∂z +

∂w
∂x

))
∂x

+
∂
(
µ
(∂w
∂y + ∂v

∂z

))
∂y

+
∂
(
2µ∂w∂z +p

)
∂z

= ρg , (3)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (4)
5

where (u,v ,w)T denotes the velocity, p the pressure, ρ the density of ice, and g the
gravitational acceleration. The effective viscosity µ is defined by Glen’s flow (Nye, 1957)
law as

µ =
1
2
A− 1

n

[
1
4

(
∂u
∂y

+
∂v
∂x

)2

+
1
4

(
∂u
∂z

+
∂w
∂x

)2

+
1
4

(
∂v
∂z

+
∂w
∂y

)2

− ∂u
∂x

∂v
∂y

− ∂u
∂x

∂w
∂z

− ∂v
∂y

∂w
∂z

] 1−n
2n

(5)10

with n the power-law exponent (n = 3 is generally assumed for modeling ice), and A
the temperature-dependent deformation rate factor. In the isothermal case, A is taken
as a spatially and temporally uniform constant.

If the top surface of the ice sheet is allowed to evolve in time, then a prognostic15

equation describing the evolution of that free surface is included. The ice-sheet domain
Ωt at a time t can be defined as

Ωt = {(x,y ,z) |b(x,y) ≤ z ≤ s(x,y ,t) for (x,y) ∈ΩH,t ∈ [0,tmax]},
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where ΩH denotes the horizontal extent of the ice sheet, s(x,y ,t) defines the top sur-
face elevation, and b(x,y) defines the fixed bottom surface of the ice sheet. We denote
the top surface as Γs and the bottom surface as Γb. The motion of the free surface is
governed by the kinematic relation

∂s
∂t

+u
∂s
∂x

+ v
∂s
∂y

−w = a, (x,y) ∈ΩH, (6)5

on the top surface of the ice sheet Γs, where a represents the surface mass balance
(accumulation less ablation). Because the bed of the ice sheet is assumed to be fixed,
we obtain a similar kinematic relation

u
∂b
∂x

+ v
∂b
∂y

−w = 0, (x,y) ∈ΩH, (7)

on the bottom surface Γb.10

2.2 Boundary equations

At the top surface Γs of the ice sheet, we impose a stress free boundary condition

1
rs

[
−∂s
∂x

(
2µ
∂u
∂x

+p
)
− ∂s
∂y
µ
(
∂u
∂y

+
∂v
∂x

)
+µ
(
∂u
∂z

+
∂w
∂x

)]
= 0, (8)

1
rs

[
−∂s
∂x
µ
(
∂u
∂y

+
∂v
∂x

)
− ∂s
∂y

(
2µ
∂v
∂y

+p
)
+µ
(
∂v
∂z

+
∂w
∂y

)]
= 0, (9)

1
rs

[
−∂s
∂x
µ
(
∂u
∂z

+
∂w
∂x

)
− ∂s
∂y
µ
(
∂w
∂y

+
∂v
∂z

)
+
(

2µ
∂w
∂z

+p
)]

= 0, (10)15

where rs =
√

1+ ( ∂s∂x )2 + ( ∂s∂y )2.

The bottom bedrock surface Γb of the ice sheet can be decomposed into two parts,
Γb,fix at which the ice sheet is fixed to the bottom bedrock and Γb,sld at which it is allowed
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to slip. We apply the zero velocity (no-slip and no-penetration) boundary condition

u = v = w = 0 (11)

on the fixed part of the basal boundary Γb,fix and the Rayleigh friction boundary condi-
tion

1
rb

[
−∂b
∂x

(
2µ
∂u
∂x

+p
)
− ∂b
∂y
µ
(
∂u
∂y

+
∂v
∂x

)
+µ
(
∂u
∂z

+
∂w
∂x

)]
= −β2u, (12)5

1
rb

[
−∂b
∂x
µ
(
∂u
∂y

+
∂v
∂x

)
− ∂b
∂y

(
2µ
∂v
∂y

+p
)
+µ
(
∂v
∂z

+
∂w
∂y

)]
= −β2v , (13)

u
∂b
∂x

+ v
∂b
∂y

−w = 0, (14)

on the sliding part Γb,sld, where rb =
√

1+ (∂b∂x )2 + (∂b∂y )2, and the parameter β2 denotes

a given, positive sliding coefficient.10

Note that both the zero velocity boundary condition and the friction boundary con-
dition automatically imply the kinematic Eq. (7) according to Eqs. (11) and (14). If
Γb,fix = Γb, we have a pure zero velocity boundary condition on the bedrock surface;
if Γb,sld = Γb, we have a pure sliding boundary condition; otherwise, we have a mixed
boundary condition.15

We also point out that, in general, b(x,y) 6= s(x,y ,t) along the boundary of ΩH so
that the ice sheet may also have a lateral boundary Γ` with some appropriate boundary
conditions posed there; for example, a periodic boundary condition or a zero boundary
condition could be applied there.
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3 Manufactured Analytic Solutions

3.1 A general form of the analytic solution

Following the work of Sargent and Fastook (2010), we start from the kinematic bound-
ary conditions (6) and (7) on the top and bottom surfaces, respectively and set the
vertical velocity w by linearly interpolating u and v from the top to bottom bedrock5

surfaces as follows:

w(x,y ,z,t) =u(x,y ,z,t)
(
∂b
∂x

s− z
s−b

+
∂s
∂x

z−b
s−b

)
+ v(x,y ,z,t)

(
∂b
∂y

s− z
s−b

+
∂s
∂y

z−b
s−b

)
+
(
∂s
∂t

−a
)
z−b
s−b

. (15)

Differentiating Eq. (15) with respect to z then gives10

∂w
∂z

=
∂u
∂z

(
∂b
∂x

s− z
s−b

+
∂s
∂x

z−b
s−b

)
+u

∂s
∂x −

∂b
∂x

s−b
+
∂v
∂z

(
∂b
∂y

s− z
s−b

+
∂s
∂y

z−b
s−b

)
+ v

∂s
∂y −

∂b
∂y

s−b

+
1

s−b

(
∂s
∂t

−a
)

. (16)

Now substituting Eq. (16) into the incompressibility Eq. (4), we obtain a first-order
quasi-linear partial differential equation with three independent variables x, y , z, and15

two dependent variables u, v :

∂u
∂x

+
∂u
∂z

(
∂b
∂x

s− z
s−b

+
∂s
∂x

z−b
s−b

)
+u

∂s
∂x −

∂b
∂x

s−b

+
∂v
∂y

+
∂v
∂z

(
∂b
∂y

s− z
s−b

+
∂s
∂y

z−b
s−b

)
+ v

∂s
∂y −

∂b
∂y

s−b
+

1
s−b

(
∂s
∂t

−a
)
= 0. (17)
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Let us choose the velocity u(x,y ,z,t) to be of a form similar to the manufactured 2-D
analytical solution in (Sargent and Fastook, 2010),

u(x,y ,z,t) = cx(s−b)γ1

[
1−
(
s− z
s−b

)λ1
]
+cbx

1
s−b

, (18)

where γ1, λ1, cx, cbx are some parameters. If we define the scaled ice depth

d (x,y ,z,t) =
s− z
s−b

, (19)5

and the ice thickness

h(x,y ,t) = s−b, (20)

then Eq. (18) can be expressed as

u(x,y ,z,t) = cxh
γ1(1−dλ1)+cbx

1
h

. (21)

Note that s, b, and h all depend on x and y , but are independent of z.10

It is then easy to verify that the derivatives of u(x,y ,z,t) are given by

∂u
∂x

= cxγ1h
γ1−1∂h

∂x
(1−dλ1)−cxλ1h

γ1dλ1−1∂d
∂x

−cbx
1

h2

∂h
∂x

, (22)

∂u
∂y

= 0, (23)

∂u
∂z

= cxλ1h
γ1−1dλ1−1. (24)

15

Substituting Eqs. (22)–(24) into the Eq. (17), we obtain a new first-order quasi-linear
partial differential equation with three independent variables x, y , z, and only one
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dependent variable v :

∂v
∂y

+
∂v
∂z

(
∂b
∂y

s− z
s−b

+
∂s
∂y

z−b
s−b

)
+ v

∂h
∂y

h

+cx(1+γ1)
∂h
∂x
hγ1−1(1−dλ1)+

1
h

(
∂s
∂t

−a
)
= 0. (25)

The characteristic equations of Eq. (25) can be found as5

dy
1

=
dz

∂b
∂y

s− z
s−b

+
∂s
∂y

z−b
s−b

=
dv

v
∂h
∂y

h +cx(1+γ1)hxhγ1−1(1−dλ1)+ 1
h

(
∂s
∂t −a

) . (26)

Note that the first-order partial differential Eq. (25) does not need initial conditions. To
solve it we first need to find two independent integrable identities that, when integrated,
provide equations such as{
φ(x,y ,z,v) = c1,
ψ(x,y ,z,v) = c2,

(27)10

where c1 and c2 are two underdetermined constants. Then, the solution of Eq. (25)
can be written as

θ(φ,ψ) = 0, (28)

where θ is an arbitrary smooth function of φ and ψ .
The first integral can be deduced from15

dy
1

=
dz

∂b
∂y

s−z
s−b +

∂s
∂y

z−b
s−b

, (29)
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from which we then have

d
(
z−b
s−b

)
= 0, (30)

implying that

z−b
s−b

= c1. (31)

The second integral can be deduced from5

dy
1

=
dv

v
∂h
∂y

h +cx(1+γ1)∂h∂xh
γ1−1(1−dλ1)+ 1

h

(∂s
∂t −a

) , (32)

from which we then have

d (hv) = −cx(1+γ1)

[
1−
(
s− z
s−b

)λ1
]
∂h
∂x
hγ1dy −

(
∂s
∂t

−a
)

dy . (33)

Note that d
(
z−b
s−b

)
= 0, in which case the integration of Eq. (33) gives

hv = −cx(1+γ1)

[
1−
(
s− z
s−b

)λ1
]∫

∂h
∂x
hγ1dy −

∫ (
∂s
∂t

−a
)

)dy +c2. (34)10

The combination of Eqs. (28), (31) and (34) implies that the general solution of the
Eq. (25) can be written as

θ

(
v(s−b)+cx(1+γ1)

[
1−
(
s− z
s−b

)λ1
]∫ (

∂s
∂x

− ∂b
∂x

)
(s−b)γ1dy

+
∫ (

∂s
∂t

−a
)

dy ,
z−b
s−b

)
= 0 (35)

15
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for some smooth function θ(·, ·).
To better represent the relationship between the velocity v and the depth d , we

choose the function θ as

θ(φ,ψ) =φ−cy [1− (1−ψ)λ2 ]+cby ,

where λ2, cy and cby are again some parameters. It is then easy to verify that v can5

be written in the following form

v(x,y ,z,t) =
cy
s−b

[
1−
(
s− z
s−b

)λ2
]
+cby

1
s−b

−
cx
s−b

(1+γ1)

[
1−
(
s− z
s−b

)λ1
]

·
∫ (

∂s
∂x

− ∂b
∂x

)
(s−b)γ1dy − 1

s−b

∫ (
∂s
∂t

−a
)

dy . (36)

By combining (15), (21) and (36), we finally obtain the velocity solution derived from10

the kinetic boundary condition and the mass conservation equation as follows:

u(x,y ,z,t) =cx(s−b)γ1

[
1−
(
s− z
s−b

)λ1
]
+cbx

1
s−b

, (37)

v(x,y ,z,t) =
cy
s−b

[
1−
(
s− z
s−b

)λ2
]
+cby

1
s−b

−
cx
s−b

(1+γ1)

[
1−
(
s− z
s−b

)λ1
]

·
∫ (

∂s
∂x

− ∂b
∂x

)
(s−b)γ1dy − 1

s−b

∫ (
∂s
∂t

−a
)

dy , (38)

w(x,y ,z,t) =u(x,y ,z,t)
(
∂b
∂x

s− z
s−b

+
∂s
∂x

z−b
s−b

)
+ v(x,y ,z,t)

(
∂b
∂y

s− z
s−b

+
∂s
∂y

z−b
s−b

)
15

+
(
∂s
∂t

−a
)
z−b
s−b

. (39)
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We choose the pressure solution to be that from the first-order ice-sheet model (Pat-
tyn, 2003):

p(x,y ,z,t) = 2µ
∂u
∂x

+2µ
∂v
∂y

−ρg(s− z). (40)

Equation (40) is derived from the Stokes momentum Eqs. (1)–(3) and the stress-
free boundary conditions (8)–(10) on the top surface through a first-order approxima-5

tion. Consequently, the above manufactured analytic velocity and pressure solutions
Eqs. (37)–(40) do not satisfy exactly the momentum equations and the top surface
boundary equations. In order to maintain the equalities of these equations, some ad-
ditional compensation terms need be added to the right-hand sides of the Eqs. (1)–
(3) and Eqs. (8)–(10); these terms can be easily obtained by way of substituting the10

above constructed analytical solution Eqs. (37)–(39) and (40) into the left-hand sides
of Eqs. (1)–(3) and (8)–(10). The explicit formulas for these compensation terms can be
calculated by using symbolic operations of the software “MAPLE” (we do not provide
them here because of their great length). We specially note that these extra terms are
of order o(δ) where δ denotes the aspect ration of the ice sheet so that a slightly mod-15

ified Stokes model is obtained. Furthermore, if a sliding boundary condition is imposed
on the (full or partial) bottom bedrock surface, then the right-hand sides of Eqs. (12)
and (13) also need be slightly revised as in the above process.

3.2 A manufactured solution under a specific geometry for time-dependent ice
flow20

Given the surface and bed elevation (i.e. the geometry of an ice sheet), a specific
manufactured solution can be produced using the above procedure from Eqs. (37)–
(40). To simplify the formulation, we introduce some scaling parameters as follows: L
is the horizontal length scale (span) of the ice sheet, Z = 1 km is the vertical length
scale, δ = L/Z is the aspect ratio, U = A L(2ρgZ)n is the horizontal velocity scale,25

W = UZ/L is the vertical velocity scale, and T = Z/W is the time scale. Note that we
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do not non-dimensionalize variables or equations; the scaling parameters are used
only for a clearer representation of the derived solutions.

The geometric setting for one of the ISMIP-HOM benchmark problems (Pattyn et al.,
2008) is used here; a parallel-sided slab of ice with a mean thickness of 1km and length
L = 80km lies on a bed with a mean slope of α = 0.5◦. The top surface of the ice sheet5

at the initial time t = 0 is given by

s(x,y ,0) = s0(x,y) = −x tan(α). (41)

The fixed basal topography is defined as a series of 500 m amplitude sinusoidal
oscillations about the mean bed elevation:

b(x,y) = s0(x,y)+η(x,y)−Z (42)10

with

η(x,y) =
Z
2

sin
(

2πx
L

)
sin
(

2πy
L

)
. (43)

Evolving over time, the top surface of the ice sheet slowly changes from flat with a uni-
form slope to sinusoidal in shape:

s(x,y ,t) = s0(x,y)+η(x,y)ξ(t) (44)15

with

ξ(t) = 1−e−ctt, (45)

where ct is a parameter that controls the rate of ice thickness change.
We assume a periodic surface mass balance given by a(x,y ,t) = ctη(x,y)e−ctt.

Then, it is easy to verify that20

∂s
∂t

−a = 0 (46)
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and thus

− 1
s−b

y∫
L
4

(
∂s
∂t

−a
)

dy = 0. (47)

Based on the above known functions s, b, a and the parameters γ1, λ1, λ2, cx, cy ,
cbx, cby and ct, we construct the velocity solution (u,v ,w) and the pressure solution
p using Eqs. (37)–(40) for the time-dependent isothermal 3-D Stokes ice-sheet flow5

model. Note that this manufactured solution is obviously doubly periodic in velocity so
that a periodic boundary condition on the lateral boundary Γl (Γl 6= ∅) is satisfied.

To further simplify the computation of the integral in Eq. (38), we specify γ1 = 0 and
λ1 = 4, in which case that integral becomes

cx
s−b

(1+γ1)

[
1−
(
s− z
s−b

)λ1
] y∫
L
4

(
∂s
∂x

− ∂b
∂x

)
(s−b)γ1dy10

=
1
2

cx
s−b

[
1−
(
s− z
s−b

)4
]
Z cos

(
2πx
L

)
cos
(

2πy
L

)
e−ctt. (48)

By using Eqs. (47) and (48), the velocity v defined in Eq. (38) can then be written as

v(x,y ,z,t) =
cy
s−b

[
1−
(
s− z
s−b

)λ2
]
+cby

1
s−b

− 1
2

cx
s−b

[
1−
(
s− z
s−b

)4
]
Z cos

(
2πx
L

)
cos
(

2πy
L

)
e−ctt (49)15

which is much easier to calculate.
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Additionally, we also let cbx = cby = 0; then, the velocity solution Eqs. (37)–(39) can
be finally simplified as

u(x,y ,z,t) =cx

(
s− z
s−b

)4

, (50)

v(x,y ,z,t) =
cy
s−b

[
1−
(
s− z
s−b

)λ2
]

− 1
2

cx
s−b

[
1−
(
s− z
s−b

)4
]
Z cos

(
2πx
L

)
cos
(

2πy
L

)
e−ctt, (51)5

w(x,y ,z,t) =u(x,y ,z,t)
(
∂b
∂x

s− z
s−b

+
∂s
∂x

z−b
s−b

)
+ v(x,y ,z,t)

(
∂b
∂y

s− z
s−b

+
∂s
∂y

z−b
s−b

)
.

(52)

The solution (u,v ,w) defined by Eqs. (50)–(52) satisfies a pure zero-velocity boundary
condition on the whole bedrock surface Γb,fix = Γb.

Note that the velocity solution (u,v ,w) of the (slightly modified) Stokes equation at10

the initial time t = 0 could easily be generated by setting the function ξ(t) = 0 in the
exact time-dependent solutions. Similarly, the final geometrically stable ice-sheet con-
figuration (i.e. a steady state with ds

dt = 0) will have a top surface with the elevation
function given by s0(x,y)+η(x,y), generated by setting the function ξ(t) = 1 in the ex-
act time-dependent solution.15

4 Numerical verification of the Stokes ice sheet model of Leng et al. (2012)

We use the above manufactured analytic solutions to verify the parallel, high-order
accurate, finite element, nonlinear Stokes ice sheet model in Leng et al. (2012). The
model uses tetrahedral elements that are produced by first extruding a 2-D, triangular
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mesh in the x,y-plane along the z-direction, after which each vertical prism is decom-
posed into three tetrahedral elements. The stable Taylor-Hood (P2-P1) finite element
pair is used. A pure zero-velocity boundary condition is imposed on the whole bedrock
surface Γb (no sliding region). The free-surface boundary condition with compensatory
terms is imposed on the top surface Γs and periodic boundary conditions are imposed5

on the lateral boundaries Γl. We set γ1 = 0, λ1 = 4, cbx = 0, and cby = 0, as discussed
in the previous section; the other parameters used in the construction of the manufac-
tured solution are chosen as follows: λ2 = 4, cx = 10−9U , cy = 10−9U and ct = 10−8/T .

For the parameters related to physical properties of the ice-sheet, we set A = 10−16

(P a−na−1) and n = 3.10

4.1 Model convergence

We first test the convergence of the model using the manufactured solution at the initial
time t = 0 (Fig. 1-left). Four sets of tetrahedral grids with uniform refinement (starting
with a 20 × 20 × 5 structured prismatic mesh) were used, with a maximum number of
degrees of freedom (DOF) of 25 985 444 at the finest grid resolution. Numerical results15

from these tests are presented in Table 1. Our approximate solutions clearly match the
exact solution well, i.e. it is easy to observe the errors reducing with grid refinement.
The rate of convergence is larger than 2.33 for the velocity and larger than 1.51 for the
pressure.

4.2 Simulation of time-dependent ice-sheet flows20

After T = 1000yr of evolution, the manufactured solution for the ice-sheet surface
s(x,y ,t), as defined in Eq. (44), approaches a steady state. We specially remark that
when the ice sheet becomes close to the steady state, the viscosity µ defined by Eq. (5)
has strong singularities which could make computational simulations relatively more
difficult. To simulate time-dependent ice-sheet flow from t = 0 to t = 1000yr, a grid of25

96 000 tetrahedra (from a 40×40×10 structured prismatic mesh) was used, resulting
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in 424,364 DOFs. We divided the period [0,1000] uniformly with a time step ∆t = 1
year to obtain a set of time steps {tk}

1000
k=0 . At each time step tk , with 0 ≤ k < 1000, we

compute the ice velocity from the numerical model and update the ice thickness at time
tk+1 according to the free surface Eq. (6), using an explicit finite element discretization
scheme (Leng et al., 2012).5

Figure 2 shows the simulated changes of the ice-sheet geometry (the top and bottom
surfaces) over time. Initially, the top surface is flat with a uniform slope (Fig. 1-left).
When the final steady state is reached (at 1000 yr), the surface takes on the sinusoidal
shape of the bed topography and the ice thickness is everywhere uniform and equal
(Fig. 1-right). Figure 2 illustrates the evolution of the ice surface at 100 yr time intervals10

along a selected profile line. Note that all of the modeled ice surfaces agree very well
with the exact solution s(x,y ,t).

Figure 3 presents the three velocity components and the pressure at the top surface
of the ice at time t = 0, 100 and 1000yr. Figure 4 shows the L2 norm of the velocity
and the pressure along the cross section at y = L/4 at the same times. Because the15

thickness is not uniform at the beginning of the simulation, the velocity and free surface
co-evolve over the length of the simulation in order to increase or decrease the surface
elevation, eventually leading to a uniform ice thickness everywhere in the domain. At
the new steady state, ice flow is almost uniform horizontally but layered in the vertical.

5 Conclusions20

In this paper, we derived manufactured solutions for isothermal, 3-D, nonlinear Stokes
flow ice-sheet models. Their applicability for verifying numerical models was demon-
strated through comparison to output from the finite element flow model of Leng et al.
(2012). The solutions derived and demonstrated here should be of general use by the
ice-sheet modeling community for the verification of nonlinear Stokes flow glacier and25

ice-sheet models.
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Supplementary material related to this article is available online at:
http://www.the-cryosphere-discuss.net/6/2689/2012/tcd-6-2689-2012-supplement.
zip.
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Table 1. L2 Errors in the velocity and pressure simulated by the parallel high-order accurate
finite element Stokes ice sheet model at the initial state t = 0.

Mesh DOF Velo. Error Conv. Rate Pres. Error Conv. Rate

20×20×5 56 184 2.67×101 – 1.91×101 –
40×40×10 424 364 4.00×100 2.74 6.70×100 1.51
80×80×20 3 296 724 3.16×10−1 3.66 1.82×10−1 1.88
160×160×40 25 985 444 6.30×10−2 2.33 5.66×10−2 1.68
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Table 1. L2 Errors in the velocity and pressure simulated by the parallel high-order accurate finite
element Stokes ice sheet model at the initial state t=0.

Mesh DOF Velo. Error Conv. Rate Pres. Error Conv. Rate

20×20×5 56,184 2.67×101 - 1.91×101 -
40×40×10 424,364 4.00×100 2.74 6.70×100 1.51
80×80×20 3,296,724 3.16×10−1 3.66 1.82×10−1 1.88

160×160×40 25,985,444 6.30×10−2 2.33 5.66×10−2 1.68

Fig. 1. Simulation results for the ice sheet geometry (the top and bottom surfaces) at the time t=0 (left)
and at at the time t=1000 years (right).
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Fig. 1. Simulation results for the ice sheet geometry (the top and bottom surfaces) at the time
t = 0 (left) and at at the time t = 1000yr (right).
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Fig. 2. x-direction profiles (km) of the ice sheet top and bottom surfaces at 100 year time intervals from
t=0 to 1000 years. Profiles are taken at at y=L/4.
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Fig. 2. x-direction profiles (km) of the ice sheet top and bottom surfaces at 100 yr time intervals
from t = 0 to 1000yr. Profiles are taken at at y = L/4.
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Fig. 3. Simulation results at the top surface of the ice sheet. From left to right: t= 0, 100, and 1000
years. From top to bottom: the velocity components u, v and w (ma−1) and the pressure p.
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Fig. 3. Simulation results at the top surface of the ice sheet. From left to right: t = 0, 100, and
1000 yr. From top to bottom: the velocity components u, v and w (ma−1) and the pressure p.
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Fig. 4. Simulation results along the cross section y=L/4. From left to right: t=0, 100 and 1000 years.
From top to bottom: the L2 norm of the velocity (ma−1) and the pressure p.
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Fig. 4. Simulation results along the cross section y = L/4. From left to right: t = 0, 100 and
1000 yr. From top to bottom: the L2 norm of the velocity (ma−1) and the pressure p.
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